A Tourism Recommender System Based on Collaboration and Text Analysis
نویسندگان
چکیده
This work presents a recommender system that helps travel agents in discovering options for customers, especially those who do not know where to go and what to do. The system analyzes textual messages exchanged between a travel agent and a customer through a private Web chat. Text mining techniques help discover interesting areas in the messages. After that, the system searches a database and retrieves tourist options (like cities and attractions) classified in these interesting areas. The system makes use of a tourism ontology, containing themes and a controlled vocabulary, to identify themes in the textual messages. The system acts as a decision support system, because it does not make recommendations directly to the customer.
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملAn Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملIntelligent Hybrid Architecture for Tourism Services
This paper presents an artificial intelligence-based architecture to be used in various tourism services, namely the user modeling and recommender system components. Through the use of several machine learning techniques, such as linear models, neural networks, classification and even text mining, a hybrid and complete approach at understanding tourism application users is attained. To assess t...
متن کاملA Multi-Criteria Recommender System For Tourism Destination
Today, the transmission of information on tourism through internet has been implemented through several systems, among of them are e-Tourism, tourism virtual reality mapping, tourism reservation system, location-based tourism services and tourism recommender system. Of all those varied systems, tourism recommender system plays awfully vital roles because the system is able to provide any touris...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. of IT & Tourism
دوره 6 شماره
صفحات -
تاریخ انتشار 2003